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Polygenic scores (PGS) are becoming important tools for understanding genetic architecture,

identifying potential genetic risk of disease, and now have clinical applications. PGS are

traditionally built in one of two ways: (1) starting from single marker regression and

adding in additional genomic information or (2) training algorithms executed directly on a

subset of the genome. Among sparse methods, the simple least absolute shrinkage and

selection operator (LASSO) regularly performs among the best methods[1]. We present an

approximate method to approach (2) that can be used in exploratory stages and methods

development to very efficiently estimate the performance of polygenic scores without

high computational costs.

Block LASSO

Here we present simple, but novel results about a “block” LASSO[2] which can be run on

small chunks of the genome (e.g., individual chromosomes) and then merged together.

Comparing separate LASSO regressions can be challenging because the overall scale of

effects can be unknown. Over the past decade there have been efforts to speed up LASSO

computations by using “safe” and “strong” screening rules[3]. Screening refers to identifying

features that will remain with zero weight at successive LASSO hyper-parameter steps,

thus reducing the effective dimensionality of the problem at that step. Several works have

shown possible improved computational efficiency. The most recent advance involves

combining strong screening with an early stopping criterion to find the exact LASSO

solution[4]. However, exact solutions can still require O(102) GB of memory and require

hours to run. As many biobanks transition to only support third-party cloud computing

this can lead to prohibitive costs for researchers who already have access to a university

based high performance computing cluster.

AoU UKB∗ UKB

trait block global block global block global

asthma
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C

0.530.02 0.5550.008 0.570.02 0.5790.007 0.6060.006 0.6230.005
gout 0.570.03 0.590.01 0.580.03 0.610.01 0.650.01 0.650.01
hyperlipidemia 0.560.01 0.6060.007 0.650.01 0.6440.003 0.6420.004 0.6600.003
hypertension 0.530.01 0.570.01 0.550.02 0.570.01 0.6140.004 0.6330.003
psoriasis 0.540.02 0.580.02 – – 0.670.01 0.680.01
type 1 diabetes 0.630.02 0.650.03 0.620.03 0.660.01 0.660.02 0.670.02
type 2 diabetes 0.570.01 0.620.02 0.580.01 0.600.02 0.630.01 0.6350.007
bmi

c
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rr
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0.210.01 0.190.03 0.190.02 0.2100.007 0.3080.008 0.3500.005
hdl 0.300.01 0.370.03 0.330.02 0.330.02 0.4290.007 0.4580.004
height 0.450.01 0.490.03 0.490.01 0.5290.005 0.5950.004 0.6300.004
total bilirubin 0.410.01 0.520.03 0.560.02 0.570.006 0.5780.005 0.5900.004

Table 1. PGS metrics for results in AoU, the UKB trained with sets

matching the size of those found in AoU (UKB∗), and for the UKB using

the maximum possible training size. All predictors are trained and tested

on European populations. Blocks colored indicate that the block and

traditional results agree within uncertainty. Blocks colored indicate

that the block and traditional results disagree by less than 20%. Finally,

bold text indicates that the results between AoU and UKB (either block

or traditional) are in agreement within uncertainty.

PGS via Penalized Regression

We can model phenotypes as a linear combination of genetics, environment, and then

some error: ~y = ~βX̄ + ~θK̄ + ~ε. After modeling the covariates, we can residualize the

phenotypes: ~y → ~y∗. Penalized regression algorithms can be described by minimizing the

objective function

O(λ) = 1
2N

||~y∗ − X̄ · ~β||2L2 + P (λ, ~β) ,

where ~y∗ is the residualized phenotype, X̄ is the genotype matrix, ~β are the model weights,

and λ is a hyper-parameter. The final term is the penalty which for LASSO is The LASSO

algorithm can be described by minimizing the objective function P (λ, ~β) = |~β|L1.

We can also compute the covariance between each feature and sum the contribution

from all correlated features. Within each block, the encoded genotype can be written
bXi,j where b labels the block, i labels the sample, and j labels the feature (SNV). We then

include the weights for each feature, bβj , and each block, αb: αb
bβj

bXi,j ≡ bHi,j. Finally we

compute the covariance matrix Kj,k = COV ( ~Hj, ~Hk),where ~Hj is the column of sample

values for the jth feature. Note that when computing the covariance between features

(SNVs) on different blocks the covariance is assumed 0 by definition. By comparing the

block LASSO to the traditional LASSO we see that the block method recovers the same

important regions with similar weights.

Figure 1. Left: performance as a function of training SNV size in UKB

and applied to different ancestry groups. Within each ancestry group,

dots correspond to training with different numbers of SNVs per

chromosome. Right: performance in AoU before and after the

re-weighting step of the blockLASSO and compared to the predicted[2]

global result (shaded bands).

Computational Resources

The main advantage of the block LASSO approach is massively reduced computational

requirements. Global memory requirements scale linearly (i.e., with the number of features).

blockLASSO can use orders of magnitude less features per block leading to large time,

memory, and third-party cost savings. Over a wide range of sparsities, i.e., predictors

ranging from a few hundred to a tens of thousands of features, the block approach shows

significant gains.

Figure 2. Fraction of predicted variance accounted for of an asthma predictor as a function of approximate location across the autosome. Error

bars represent averaging over cross-validation. The block approach finds similarly important regions as the global approach (e.g., the HLA/MHC

region above), but includes more spurious signals accounting for small amounts of variance.

Conclusions

ML algorithms exploiting block correlational structure (e.g.,

chromosome by chromosome), generate best-in-class PGS while

requiring only modest compute resources. Examples include LDpred2,

PRS-cs, and now penalized regression. Many of these computations can

be run on a laptop.

A chromosome-by-chromosome (block) LASSO can produce PGS

comparable to traditional LASSO based approaches in less than 10

minutes and only using 8GB of RAM.

Block approaches are: more “parallelizable”, faster run times, reduced

computational demand, cheaper, more environmentally friendly.

This approach relies on the fact that correlations between SNPs on

different chromosomes are generally small.

Different machine learning methods, novel re-weighting approaches,

and incorporating additional information (e.g., functional info, other

-omics, etc.) can still improve block approaches.
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