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(My) Background

2010 — 2018 theoretical physicist: PhD, postdoc, etc. Lots of
computational work, theoritical work, uncertainty analyses, etc.

2018 — present bioinformatics/statistical genetics. Wide range of
interests: methods development, high performance computing, heritability,
family studies, trans-ancestry PGS, and much more.
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Polygenic scores

Weights applied to SNP/Vs, CNVs, genes, etc. Two common approaches:

Use GWAS weights/beta values

® “improve” weights with LD

information

® “good” gwas can require
millions of samples

® ‘“easy” to combine different
sources (e.g., GWAS and LD °

from different biobanks)

® computationally “simple” and o

easily parallelized

® not easy to extend to
multi/trans-ancestries

Apply machine learning directly to
genotype matrices

Train directly on correlation
structure

Rigorous compressed sensing
theorems for signal recovery

“good” PGS with < 500k
samples

computationally intensive.

not easy to extend to
multi/trans-ancestries
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blockLASSO

How to reduce the computational needs:

O
use sparsity! D O — )e ) O
(1) can look at sparse algorithms (e.g.,
P g g O D O X

LASSO) (2) can enforce “screening”
rules/approximations which pre-select a

blockLASSO: run LASSO on individual
chromosomes then use simple linear

subset of features (3) (NEW) utilize the
approximate block diagonal structure of
regression to piece back together.
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blockLASSO

(genetics only: PGS compared to phenotypes residualized for covariates.)
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Work is currently under peer review. Get a first look at the preprint:
https:
//www.medrxiv.org/content/10.1101/2024.06.25.24309482v1

Tim Raben: rabentim@msu.edu (MSU) SC Symposium on PRS 09/19/24


https://www.medrxiv.org/content/10.1101/2024.06.25.24309482v1
https://www.medrxiv.org/content/10.1101/2024.06.25.24309482v1

Conclusions

® blockLASSO has been validated in two biobanks and 114 phenotypes.

® Variance explained by features is simliar between LASSO and
blockLASSO.

e A standard LASSO run can cost ~ $50 per via standard cloud
computing rates (e.g., UKB and AoU) and take 12-24 hours.

® A blockLASSO can be run for ~ $1 and finishes within minutes

® further improvements can be made by incorporating screening rules,
functional information, ancestry specific information, and utilizing
warm starts from other predictors.

Interested in collaborating or learning more?
Contact me: rabentim@msu.edu or traben13@gmail.com

Tim Raben: rabentim@msu.edu (MSU) SC Symposium on PRS 09/19/24



